Did you hear that? Adversarial Examples Against Automatic Speech Recognition
نویسندگان
چکیده
Speech is a common and effective way of communication between humans, and modern consumer devices such as smartphones and home hubs are equipped with deep learning based accurate automatic speech recognition to enable natural interaction between humans and machines. Recently, researchers have demonstrated powerful attacks against machine learning models that can fool them to produce incorrect results. However, nearly all previous research in adversarial attacks has focused on image recognition and object detection models. In this short paper, we present a first of its kind demonstration of adversarial attacks against speech classification model. Our algorithm performs targeted attacks with 87% success by adding small background noise without having to know the underlying model parameter and architecture. Our attack only changes the least significant bits of a subset of audio clip samples, and the noise does not change 89% the human listener’s perception of the audio clip as evaluated in our human study.
منابع مشابه
Towards Mitigating Audio Adversarial Perturbations
Audio adversarial examples targeting automatic speech recognition systems have recently been made possible in different tasks, such as speech-to-text translation and speech classification. Here we aim to explore the robustness of these audio adversarial examples generated via two attack strategies by applying different signal processing methods to recover the original audio sequence. In additio...
متن کاملAudio Adversarial Examples: Targeted Attacks on Speech-to-Text
We construct targeted audio adversarial examples on automatic speech recognition. Given any audio waveform, we can produce another that is over 99.9% similar, but transcribes as any phrase we choose (recognizing up to 50 characters per second of audio). We apply our white-box iterative optimization-based attack to Mozilla’s implementation DeepSpeech end-to-end, and show it has a 100% success ra...
متن کاملA Database for Automatic Persian Speech Emotion Recognition: Collection, Processing and Evaluation
Abstract Recent developments in robotics automation have motivated researchers to improve the efficiency of interactive systems by making a natural man-machine interaction. Since speech is the most popular method of communication, recognizing human emotions from speech signal becomes a challenging research topic known as Speech Emotion Recognition (SER). In this study, we propose a Persian em...
متن کاملHoudini: Fooling Deep Structured Visual and Speech Recognition Models with Adversarial Examples
Generating adversarial examples is a critical step for evaluating and improving the robustness of learning machines. So far, most existing methods only work for classification and are not designed to alter the true performance measure of the problem at hand. We introduce a novel flexible approach named Houdini for generating adversarial examples specifically tailored for the final performance m...
متن کاملFinding Information in Audio: a New Paradigm for Audio Browsing and Retrieval
Information retrieval from audio data is sharply different from information retrieval from text, not simply because speech recognition errors affect retrieval effectiveness, but more fundamentally because of the linear nature of speech, and of the differences in human capabilities for processing speech versus text. We describe SCAN, a prototype speech retrieval and browsing system that addresse...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1801.00554 شماره
صفحات -
تاریخ انتشار 2018